Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jun 26, 2025

📄 15% (0.15x) speedup for funcA in code_to_optimize/code_directories/simple_tracer_e2e/workload.py

⏱️ Runtime : 1.91 milliseconds 1.66 milliseconds (best of 340 runs)

📝 Explanation and details

Here’s an optimized version of your code for Python 3.11.6. The main points of improvement are.

  • Replace " ".join(str(i) for i in range(number)) with a faster approach that avoids repeated calls to str(i). Using map(str, ...) is significantly faster and uses less overhead.
  • Since j is not used, you can remove its assignment to avoid unnecessary computation.
  • You don't need min every time if your _cached_joined function is correct, but preserving it as per the original function logic for correctness on inputs >1000.
  • The lru_cache remains, as it's critical to performance for repeated calls.

Here’s the optimized version.

This program will run strictly faster, especially for large input values and repeated calls due to the combination of a faster string conversion and the efficient use of the cache.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 183 Passed
⏪ Replay Tests 3 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from functools import lru_cache

# imports
import pytest  # used for our unit tests
from workload import funcA

# unit tests

# --------------------
# Basic Test Cases
# --------------------

def test_funcA_zero():
    # Test for input 0 (should return empty string)
    codeflash_output = funcA(0) # 2.96μs -> 2.46μs (20.4% faster)

def test_funcA_one():
    # Test for input 1 (should return '0')
    codeflash_output = funcA(1) # 3.02μs -> 2.67μs (13.5% faster)

def test_funcA_two():
    # Test for input 2 (should return '0 1')
    codeflash_output = funcA(2) # 3.40μs -> 3.00μs (13.4% faster)

def test_funcA_five():
    # Test for input 5 (should return '0 1 2 3 4')
    codeflash_output = funcA(5) # 3.38μs -> 3.00μs (12.7% faster)

def test_funcA_typical_small_number():
    # Test for input 10 (should return '0 1 2 3 4 5 6 7 8 9')
    codeflash_output = funcA(10) # 1.00μs -> 771ns (29.8% faster)

# --------------------
# Edge Test Cases
# --------------------

def test_funcA_negative():
    # Negative input should return empty string (range(negative) is empty)
    codeflash_output = funcA(-5) # 2.63μs -> 2.31μs (14.3% faster)

def test_funcA_large_input_caps_at_1000():
    # Input greater than 1000 should cap at 1000
    codeflash_output = funcA(1500); result = codeflash_output # 89.6μs -> 79.1μs (13.3% faster)
    # Should be space-separated numbers from 0 to 999
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_exactly_1000():
    # Input exactly 1000 should return 0..999
    codeflash_output = funcA(1000); result = codeflash_output # 1.18μs -> 802ns (47.4% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_just_below_1000():
    # Input 999 should return 0..998
    codeflash_output = funcA(999); result = codeflash_output # 88.1μs -> 77.6μs (13.6% faster)
    expected = " ".join(str(i) for i in range(999))

def test_funcA_float_input():
    # Float input should raise TypeError (range expects integer)
    with pytest.raises(TypeError):
        funcA(5.5)

def test_funcA_string_input():
    # String input should raise TypeError
    with pytest.raises(TypeError):
        funcA("10")

def test_funcA_none_input():
    # None input should raise TypeError
    with pytest.raises(TypeError):
        funcA(None)

def test_funcA_bool_input():
    # Boolean input: True is 1, False is 0
    codeflash_output = funcA(True) # 3.64μs -> 3.24μs (12.4% faster)
    codeflash_output = funcA(False) # 1.58μs -> 1.20μs (31.7% faster)

def test_funcA_minimum_integer():
    # Very large negative input should return empty string
    codeflash_output = funcA(-1000000) # 2.96μs -> 2.13μs (38.5% faster)

def test_funcA_input_is_list():
    # List input should raise TypeError
    with pytest.raises(TypeError):
        funcA([5])

# --------------------
# Large Scale Test Cases
# --------------------

def test_funcA_large_scale_500():
    # Test with 500 elements
    codeflash_output = funcA(500); result = codeflash_output # 46.3μs -> 40.6μs (14.1% faster)
    expected = " ".join(str(i) for i in range(500))

def test_funcA_large_scale_999():
    # Test with 999 elements
    codeflash_output = funcA(999); result = codeflash_output # 1.17μs -> 801ns (46.3% faster)
    expected = " ".join(str(i) for i in range(999))

def test_funcA_large_scale_1000():
    # Test with maximum allowed (1000)
    codeflash_output = funcA(1000); result = codeflash_output # 1.22μs -> 832ns (47.0% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_performance_repeated_calls():
    # Test repeated calls with same input to check cache doesn't affect correctness
    for _ in range(10):
        codeflash_output = funcA(1000)

def test_funcA_performance_varied_calls():
    # Test repeated calls with different inputs to check cache correctness
    for n in range(990, 1001):
        codeflash_output = funcA(n)

def test_funcA_performance_many_small_calls():
    # Test many small calls to test cache and correctness
    for n in range(0, 100):
        codeflash_output = funcA(n)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from functools import lru_cache

# imports
import pytest  # used for our unit tests
from workload import funcA

# unit tests

# -----------------------
# 1. Basic Test Cases
# -----------------------

def test_funcA_zero():
    # Test with input 0 (should return empty string)
    codeflash_output = funcA(0) # 1.04μs -> 842ns (23.8% faster)

def test_funcA_one():
    # Test with input 1 (should return "0")
    codeflash_output = funcA(1) # 1.04μs -> 801ns (30.1% faster)

def test_funcA_small_number():
    # Test with a small number
    codeflash_output = funcA(5) # 992ns -> 792ns (25.3% faster)

def test_funcA_typical_number():
    # Test with a typical number in the middle of the range
    codeflash_output = funcA(10) # 1.00μs -> 762ns (31.5% faster)

def test_funcA_string_equivalence():
    # Test that the output is a string and not a list
    codeflash_output = funcA(3); result = codeflash_output # 1.00μs -> 782ns (28.1% faster)

# -----------------------
# 2. Edge Test Cases
# -----------------------

def test_funcA_negative_number():
    # Negative number should be treated as range(negative) == empty
    codeflash_output = funcA(-5) # 1.09μs -> 832ns (31.2% faster)

def test_funcA_large_number_capped():
    # Input greater than 1000 should cap at 1000
    codeflash_output = funcA(1500); result = codeflash_output # 1.18μs -> 791ns (49.4% faster)
    # Should be string of "0 1 2 ... 999"
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_at_cap():
    # Input exactly at cap (1000)
    codeflash_output = funcA(1000); result = codeflash_output # 1.17μs -> 781ns (50.2% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_at_cap_plus_one():
    # Input just above cap (1001)
    codeflash_output = funcA(1001); result = codeflash_output # 1.18μs -> 811ns (45.7% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_non_integer_input():
    # Should raise TypeError for non-integer input
    with pytest.raises(TypeError):
        funcA("10")
    with pytest.raises(TypeError):
        funcA(5.5)
    with pytest.raises(TypeError):
        funcA(None)

def test_funcA_boolean_input():
    # Python treats True as 1 and False as 0
    codeflash_output = funcA(True) # 1.45μs -> 911ns (59.4% faster)
    codeflash_output = funcA(False) # 592ns -> 471ns (25.7% faster)

def test_funcA_minimum_integer():
    # Test with minimum possible integer value
    codeflash_output = funcA(-999999) # 3.22μs -> 2.44μs (31.6% faster)

def test_funcA_maximum_integer():
    # Test with a very large integer (should cap at 1000)
    codeflash_output = funcA(10**9); result = codeflash_output # 1.18μs -> 801ns (47.6% faster)
    expected = " ".join(str(i) for i in range(1000))

# -----------------------
# 3. Large Scale Test Cases
# -----------------------

def test_funcA_large_scale_500():
    # Test with a large, but not capped, number
    n = 500
    codeflash_output = funcA(n); result = codeflash_output # 1.24μs -> 862ns (44.1% faster)
    expected = " ".join(str(i) for i in range(n))

def test_funcA_large_scale_999():
    # Test with n=999 (one less than cap)
    n = 999
    codeflash_output = funcA(n); result = codeflash_output # 1.23μs -> 822ns (49.9% faster)
    expected = " ".join(str(i) for i in range(n))

def test_funcA_performance_under_repeated_calls():
    # Test repeated calls to ensure caching doesn't break output
    n = 1000
    expected = " ".join(str(i) for i in range(n))
    for _ in range(10):
        codeflash_output = funcA(n)

def test_funcA_performance_under_varied_calls():
    # Test repeated calls with different arguments to test cache
    results = []
    for n in range(0, 1001, 100):
        codeflash_output = funcA(n); result = codeflash_output
        expected = " ".join(str(i) for i in range(n))
        results.append(result)

# -----------------------
# Additional Edge Cases
# -----------------------

def test_funcA_input_is_zero_string():
    # Should raise TypeError for string input, even if string is "0"
    with pytest.raises(TypeError):
        funcA("0")

def test_funcA_input_is_float_equivalent_to_int():
    # Should raise TypeError for float input, even if float is 5.0
    with pytest.raises(TypeError):
        funcA(5.0)

def test_funcA_input_is_list():
    # Should raise TypeError for list input
    with pytest.raises(TypeError):
        funcA([10])

def test_funcA_input_is_none():
    # Should raise TypeError for None input
    with pytest.raises(TypeError):
        funcA(None)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-funcA-mccv5ka1 and push.

Codeflash

Here’s an optimized version of your code for Python 3.11.6. The main points of improvement are.

- Replace `" ".join(str(i) for i in range(number))` with a faster approach that avoids repeated calls to `str(i)`. Using `map(str, ...)` is significantly faster and uses less overhead.
- Since `j` is not used, you can remove its assignment to avoid unnecessary computation.
- You don't need `min` every time if your `_cached_joined` function is correct, but preserving it as per the original function logic for correctness on inputs >1000.
- The lru_cache remains, as it's critical to performance for repeated calls.

Here’s the optimized version.



This program will run strictly faster, especially for large input values and repeated calls due to the combination of a faster string conversion and the efficient use of the cache.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 26, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 June 26, 2025 04:09
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-funcA-mccv5ka1 branch June 26, 2025 04:31
@codeflash-ai
Copy link
Contributor Author

codeflash-ai bot commented Jun 26, 2025

This PR has been automatically closed because the original PR #386 by codeflash-ai[bot] was closed.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants